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Cyclohexynes as Intermediates in a Novel endo-Cyclization of Alkynylzincates 
Derived from 5-Hexynyi Tosylates 
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Abstract: The x-type endo-cyclizafion of metal w, etylides to form cyclohexynes was observed f~ the 
first time in the reaction of alkynylzineams derived from 5-1mxynyl tosylatcs. The endo-eyeli,~fion took 
place in competition with exo-eyclization, leading to the fommlion of 1-(eyclopentylidene)alkylzines. 
© 1997 Elsevier Science Ltd. 

Alkynyltrialkylborates 1 (M = B, m= 2, n = 0 or 3) bearing a remote electrophilic center undergo exo- 
cyclization with 1,2-migration of the alkyl ligand to give organoboron derivatives of alkylidenecycloalkanes 2 
(Scheme 1). 1,2 We have recently shown that alkynylzincates 1 (M = Zn, m = 1, n = 0) derived from 
homopropargylic arenesulfonates undergo a similar exo-cyclization to afford synthetically useful 1- 
(eyclopropylidene)alkylzincs 2. 3 Herein, we wish to report a novel endo-cyclization of homologous 
alkynylzincates 1 (M = Zn, n = 2, 3) leading to cycloalkenylzines 4 through the intermediacy of strained 
cycloalkynes 3. Although alkylation of metal acetylides is a well-established process and the intramolecular 
version of the reaction has often been used for the synthesis of medium- and large-ring cycloalkynes, 4 the 
formation of smaller-ring, strained cycloalkynes has been considered to be stereoelectronically unfavorable. To 
our knowledge, this is the first example of cyclization of metal acetylides to form strained cycloalkynes 3. 4 
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Treatment of tosylates 5a,b with lithium triorganozincates (2.0 equiv) in THF at temperatures from -80 
°C to rt and quenching of the mixture with D20 and/or H20 gave a mixture of endo-cyclization products 6a-d 
and exo-cyclization products 7a-d (eq l ,  Table 1). 5-7 1H NMR analyses of the products obtained by D20- 
quench (entries 1 and 2) showed quantitative (>95%) incorporation of deuterium at the olefinic carbons, 
demonstm6ng generation of the corresponding organozinc species. In the reaction of 5-bexynyl tosylate f~, the 
series of zincates, Ph3ZnLi, Bu3ZnLi, and t-Bu3ZnLi, led to a decrease of the 6:7 ratio. The ratio was also 
influenced by the methylene-chain length of the substrates. As reported previously, exo-cyclization took place 
exclusively in the reaction of 3-butynyl arenesulfonates. 3 The reaction of 4-pentynyl p-fluorobenzenesulfonate 
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with Bu3ZnLi was sluggish and neither exo- nor endo-cyclization product was formed. 8 Upon treatment with 
Bu3ZnL,i, 5-heptynyl tosylate $b underwent selective exo-cycfization while endo-cyclization product 6d was 
formed as a minor product in the reaction with Ph3ZnLi (entries 4 and 5). 
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We previously showed that 1-(cyclopropylidene)alkylzinc 2 (M = Zn, n = 0) undergoes ring opening at 
temperatures above -20 °C to be converted to homopropargylic zinc R~-=CCH2CH2ZnL. 3 Cycloalkenylzinc 10 
may be obtained by a similar ring opening of (cycloalkylidene)alkylzinc 8 and intramolecular carbometalation of 
the resulting organozinc 9 (Scheme 2). 9 However, the possibility was ruled out by the following experiment. 
l-(Cyclopentylidene)alkylzinc 8 (R = Ph, n = I) was prepared separately by the reaction of (l- 
iodobezylidene)cyclopentane and t-BuLl (THF, -85 °C) followed by treatment with Bu2Zn (2 ¢quiv). 
Protonation of the mixture after standing at rt for 17 h gave 7a (56%) but no 6a was detected. 

In order to gain further information on the mechanism of endo-cyclization, reactions were examined for 
substituted 5-hvxynyl tosylates 5e,d (eqs 2 and 3, entries 6-9). Surprisingly, two isomeric endo-cyclization 
products 6f-i and 6f-i' were produced as well as exo-cyclization products E- and Z-7f-i. The ratios of endo- 
vs exo-cyclization [(6+6'):7] are quite similar to those observed in the reaction of Sa and the corresponding 
zincates. In the reaction of 5c, two endo-cyclization products were formed in nearly equal amounts but, in the 
reaction of Sd, the formation of the less sterically encumbered product 6i' was predominant. 
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Table I Reaction of Alk]myl Tos},lates 5a-d with Zincates a 
entry subsume zinca= endo-products (rel. %)b 

1 Sa Ph3ZaLi 6a (60) 
2 d Bu3ZnLi 6b (20) 
3 f t-Bu37JtLi 6¢ (18) 
4 5b Ph3ZaLi 6d (15) 
5 Bu3ZnLi 
6 5c Ph37_ztLi 6 f  (27) 6 f  ° (27) 
7 Bu3ZaLi 6 g (7.7) 6 g '  (7.8) 
8 t-Bu3ZnLi 6h (4.8) 6 h '  (4.5) 
9 Sd Ph~ZnLi 6i  (13) 6 i '  (56) 

exo-produc  (rel. %p combi.ed p=m (%)= 
7a (40) 77 
7b (80) 64e 
7c (82) 82e 
7d (85) 58 
7e (100) 78 

(Z)-7f (28) (E)-7f (18) 61 
(Z)-7g (77) (E).7g (7.5) 77 
(Z)-7g (73) (E)-7g (17) 67 
(Z?-7h (5) (E)-7h (26) 80 

a Unless otherwise noted, reactions were carried out by mixing tosylate 5 and a zincate (2 equiv) in THF at -80 °C. The 
mixture was allowed to warm to rt during 2 h, stirred further for 3 h, and quenched by the addition of D20 (enlries I and 2) or 
1"I20 (entries 3-9). b Unless otherwise noted, the product distributions were determined by capillary GC analyses, c Isolated 
yield unless otherwise noted, d The product distribution was determined by IH NMR analysis, e GC yield, f The reaction 
was carried out at temperatures from 0 °C to n for 4 h. 
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The result can be rationalized by a mechanism involving cycloalkyne 12 as an intermediate (Scheme 
3).4,10 Thus, carbometalation of 12 (R 1 = Ph, R 2 = H) derived from 5c should proceed in a nonregioselective 
manner to give a 1:1 mixture of 15 and 16.11,12, 9a On the other hand, the reaction of 12 (R 1 = H, R 2 = Me) 
der~.ved from 5d should lead to selective formation of 16. Direct evidence for the intermediacy of 12 was 
obtained by trapping experiments using 1,3-diphenylisobenzofuran. Thus, when the reaction of $a and 
Ph 73ZnLi was carded out in the presence of 1,3-diphenylisobenzofuran (3.5 equiv), the Diels-Alder adduct 1713 
was obtained in 17% yield together with 6a (31%) and 7a (27%). 

Cycloalkyne 12 may arise directly with participation of the ~-electrons (~-type cyclization) 14 at the ct 
position (path a) or, in a stepwise manner, by a rearrangement of carbenoid intermediate 13 (path b).15 In order 
to distinguish between these alternatives, the labeled alkynyl tosylate [6-13C]-5c in which the terminal acetylenic 
carbon is labeled with 13C (10%) was prepared and subjected to the reaction with Ph3ZnLi. Within the limits of 
NMR (IH- and 13C-) detection, the labeled carbon was found at the 2- and 1-positions of 6f and 61", 
respectively. According to path b, the label may distribute at the two acetylenic carbons by a carbene 
rearrangement leading to 13C-scrambling in both 6f and 61". Therefore, the experiment clearly showed that the 
endo-cyclization proceeded through path a. 
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The result discussed above also supports a concerted pathway for exo-cyclization leading to 14 rather 
than a stepwise pathway via 13. In ~tdclltion, the stereoselective formation of the Z-isomers in the reaction of 5c 
is also difficult to be explained by the stepwise pathway. It is most likely that alkynylzincates 11 undergo 
competitive ~-type cyclizations, one in an endo manner to 12 and the other in an exo manner with the 1,2- 
migration of the alkyl ligand to 14. In this regard, origin of the observed variation in endo- vs exo-cyclization 
is our current interest. 16 
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